Recovering Sparse Signals Using Sparse Measurement Matrices in Compressed DNA Microarrays
نویسندگان
چکیده
منابع مشابه
Adaptive Compressed Sensing Using Sparse Measurement Matrices
Compressed sensing methods using sparse measurement matrices and iterative message-passing recovery procedures are recently investigated due to their low computational complexity and excellent performance. The design and analysis of this class of methods is inspired by a large volume of work on sparsegraph codes such as Low-Density Parity-Check (LDPC) codes and the iterative Belief-Propagation ...
متن کاملCompressed Neighbour Discovery using Sparse Kerdock Matrices
We study the network-wide neighbour discovery problem in wireless networks in which each node in a network must discovery the network interface addresses (NIAs) of its neighbour. We work within the rapid on-off division duplex framework proposed by Guo and Zhang in [5] in which all nodes are assigned different on-off signatures which allow them listen to the transmissions of neighbouring nodes ...
متن کاملSparse Recovery Using Sparse Random Matrices
Over the recent years, a new *linear* method for compressing high-dimensional data (e.g., images) has been discovered. For any high-dimensional vector x, its *sketch* is equal to Ax, where A is an m x n matrix (possibly chosen at random). Although typically the sketch length m is much smaller than the number of dimensions n, the sketch contains enough information to recover an *approximation* t...
متن کاملA Novel Compressed Sensing Based Model for Reconstructing Sparse Signals Using Phase Sparse Character
1 Abstract—Phase modulation is a commonly used modulation mode in digital communication, which usually brings phase sparsity to digital signals. It is naturally to connect the sparsity with the newly emerged theory of compressed sensing (CS), which enables sub-Nyquist sampling of high-bandwidth to sparse signals. For the present, applications of CS theory in communication field mainly focus on ...
متن کاملSpaRCS: Recovering low-rank and sparse matrices from compressive measurements
We consider the problem of recovering a matrix M that is the sum of a low-rank matrix L and a sparse matrix S from a small set of linear measurements of the form y = A(M) = A(L + S). This model subsumes three important classes of signal recovery problems: compressive sensing, affine rank minimization, and robust principal component analysis. We propose a natural optimization problem for signal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Journal of Selected Topics in Signal Processing
سال: 2008
ISSN: 1932-4553
DOI: 10.1109/jstsp.2008.924384